

Thank you for buying ALIGN Products．The T－REX 250 Helicopter is designed as an easy to use，full featured Helicopter R／C model capable of ail forms of rotary flight．Please read the manual carefully before assembling the model，and follow all precautions and recommendations located within the manual．Be sure to retain the manual for future reference， routine maintenance，and tuning．The T－REX 250 is a new product developed by ALIGN．
It features the best design available on the Micro－Heli market to date，providing flying stability for beginners，full aerobatic capability for advanced fliers，and unsurpassed reliability for customer support．

THE MEANING OF SYMBOLS 楼誌代表搯童

$\begin{gathered} \text { WARNING } \\ \hline \text { 等 } \end{gathered}$	Mishanding due to failure to follow these instructions may result in damage or injury．
A CAUTION	Mishanding due to faifure to follow these instructions may result in danger．
$Q^{\text {FORBIDCEN }} \begin{gathered} \text { 薪 in } \end{gathered}$	Do not attempt under any circumstances．

IMPORTANT NOTES 需要聲明

R／C helicopters，including the T－REX 250 are not toys．R／C helicopter utize varionshigh－tech products and Technologies to provide superior performance．Improper use of this product carifesult in serious injury or even death．Please read this manual carefully before using and make sure to be consciois of your own personal safety and the safety of others and your environment when operating all ALIGN prodicts＊． Manufacturer and seller assume no liability for the operation or the use or this product．
Intended for use only by adults with experience tying remote controf helicopters at a legal flying field．After the sale of this product we cannot maintain any control over lis operation or usage．

We recommend that you ditaln the assistance of an experienced pilot before attempting to fly our products for the first time．A local expert is the best way to properly assemble，setup，and fly your model for the first time．The T－REX 250 requires certain degree of skill to operate，and is a consumer item．Any damage or dissatisfaction as a result of accidents or modifications are not covered by any warrantee and cannot be returned for repair or replacement．Please contact our distributors for free technical consultation and parts at discounted rates when you experience problems during operation or maintenance．

3，SAFETM NOTESt

```
A CAUTION
    注 㤣
```

Fly only in safe areas，away from other people．Do not operate R／C aircraft within the vicinity of homes or crowds of people．R／C aircraft are prone to accidents，failures，and crashes due to a variety of reasons including，lack of maintenance，pilot error，and radio interference．Pilots are responsible for their actions and damage or injury occurring during the operation or as of a result of R / C aircraft models．

OR8HDES
 数 非
 LOCATE AN APPROPRIATE LOCATION 遠離障䌦物及，群

R／C helicopters fly at high speed，thus posing a certain degree of potential danger．Choose an a legal flying field consisting of flat，smooth ground without obstacles，Do not fly near buildings，high voltage cables，or trees to ensure the safety of yourself，others and your model．For the first practice，please choose a legal flying field and can use a training skid to fly for reducing the damage．Do not fly your model in inclement weather，such as rain， wind，snow or darkness．

鸟及機䯏的安全。

PREVENT MOISTURE 遠離潮濕還摬

R／C models are composed of many precision electrical components．
It is critical to keep the model and associated equipment away from moisture and other contaminants．The introduction or exposure to water or moisture in any form can cause the model to malfunction resulting in loss of use，or a crash．Do not operate or expose To rain or moisture．

Please use the replacement of parts on the manual to ensure the safety of instructors． This product is for R／C model，so do not use for other purpose．

$\Delta^{\text {WaRNMG }}$

Before turning on your model and transmitter，check to make sure no one else is operating on the same frequency．Frequency interference can cause your model，of other models to crash．The guidance provided by an experienced pilot wil be invatuable for the assembly， tuning，trimming，and actual first flight．（Recommend you to practice with computer－based flight simulator．）

A WARNING
4．登 SAFE OPERATION 呚全操作
Operate this unit within yourability．Do not fly under tired condition and improper operation may cause in danger．
䟹特可能鍺堤高。

During the operation of the helicopter，the main rotor and tail rotor will be spinning at a high rate of speed．The blades are capable of inflicting serious bodily injury and damage to the environment．Be conscious of your actions，and careful to keep your face，eyes，hands， and loose clothing away from the blades．Always fly the model a safe distance from yourself and others，as well as surrounding objects．Never take your eyes off the model or leave it unattended while it is turned on．Immediately turn off the model and transmitter when you have landed the model．

R／C models are made up various forms of plastic．Plastic is very susceptible to damage or deformation due to extreme heat and cold climate．Make sure not to store the model near any source of heat such as an oven，or heater．It is best to store the model indoors，in a climate－controlled，room temperature environment．

ADDITIONAL TOOLS REQUIRED FOR ASSEMBLY 自萮工其

tulen

tribefofiying，please check to make sure no one else is operating on the same frequency for the safety．
Before flight，please check if the batteries of transmitter and receiver are enough for the flight．
B Before turn on the transmitter，please check if the throttle stick is in the lowest position．IDLE switch is OFF．
$\$$ When turn off the unit，please follow the power on／off procedure．Power ON－Please turn on the transmitter first，and then turn on receiver．Power OFF－Please turn off the receiver first and then turn off the transmitter．
Improper procedure may cause out of control，so please to have this correct habit．
$\dot{\sim}$ Before operation，check every movement is smooth and directions are correct．Carefully inspect servos for interference and broken gear．
Check for missing or loose screws and nuts．See if there is any cracked and incomplete assembly of parts．
Carefully check main rotor blades and rotor holders．Broken and premature failures of parts possibly cause resulting in a dangerous situation．
Check all ball links to avoid excess play and replace as needed．Failure to do so will result in poor flight stability．
Check the baftery and power plug are fastened．Vibration and violent flight may cause the plug loose and result out of control．

When you see the marks as below，please use glue or grease to ensure fiying safety．

CA：Apply CA Glue to fix．
R48：Apply Anaerobics Retainer to fix．
T22：Apply Thread Lock to fix．
OlL：Add Grease．

122：使用統䌦

R48 metal tubular adhesive（eg．Bearings）． $\mathbf{T 2 2}$ thread lock， apply a small amount on screws or metal parts and wipe surplus off．When disassembling，recommend to heat the metal joint about 15 Seconds．
（NOTE：Keep plastic parts away from heat．）
When assembling ball links，make sure the＂A＂character faces outside．

250HH8

(9) \square

Bearing

(o) 0

Socket button head collar screw

A $\stackrel{\text { cainion }}{i z}$

When tightening linkage balls and screws to plastic parts, please note to tighten them firmly and the best tightening torque is within $1 \mathrm{kgf.cm}$. Do not over tighten, or the plastic parts will break off or the screws strip.

For original manufactory package, if the product is already assembled by Factory, please check again if screws are firmly secured and applied with some glue.

250HB3

Main frame assembly point:
First do not fully tighten the screws of main frames.
Put the main shaft through the two bearings and check if the movements (up/down) are smooth. The bottom bracket must be firmly touched the level table top (glass surface); please keep the smooth movements on main shaft and level bottom bracket, then slowly tighten the screws. A correct assembly can help for the power and flight performance.

250HB3

250HG2A

DS 410 Digital Servo

1．Stalliorque／fiumari． $8 \mathrm{kgg} \mathrm{cm}(4,8 \mathrm{~V})$

$$
22 \lg \cdot \operatorname{cm}(6.0 \mathrm{~V})
$$

O．Dimension／R $5.22 .8 \times 12 \times 25,4 \mathrm{~mm}$ 4．Weight／㫿 12 27g

(1) (jeat	(0) \square
Socket button head screw 	Bearing 絞溪 ($02 \times 5 \times 2.5 \mathrm{~mm}) \times 2$

250HT5

(a) O

Linkage ball A(0\#fx2)

Washer

绿䛊 $(1.5 \times \oplus 3 \times 0.5 \mathrm{~mm}) \times 7$

Already assembled by factory, please note to check again.

Tail pitch assembly

Aim tail rotor hub at the concave of tail rotor shaft and fix it, please apply a little glue on the set screw.

When tightening a limage obll \$o a plastic part, please note to use a little CA glue and tightenifitinly, but not over tightened, or they will strip.

Care must be taken during assembly to ensure tail grips operate smoothly without binding. Any slight binding may affect tall action during flight.

Tail pitch bell crank must be parallel to tall output shaft to ensure sufficient pitch travel range.

Installation Method（1）安装方式（1）
Use attached Hoop and Loop Tape， tape theHoop side（hooked）on the battery mountingplate and the Loop side（fuzzy）on the batteryto fix the battery in order to prevent any slip．

 Hook and Loop Tape（fuzzy）

NOTE：When installing the speed controller，please keep a distance at least 1 cm fromthe receiver to avoid any interference．

Installation Mothod（2）安装方式（2）
NOTE；When listalling the speed controller，pleasse keep a distance atlesst 1 cm romthe feceiver to avoid any interference．

4（1）（5）

To set this option is to turn on the transmitter and connect to the helicopter power. Note: For the safety, please do not connect ESC to the brushless motor before the setting in order to prevent any accident caused by the motor running during the seting.

Recommend to choose wead Lock typercor Gyro and Jum off Revolution mixing(RVMX) mode on the transmitter, then set the gain switch on the transmitter and whe gyio to head lock wode. The gain setting is about 70%, and after transmitter setting, connect to the helicopter power for working sh tid neutidi setimg Note: When connecting to the helicopter power, please do not touch tail rudder stickand the helicopter. Then wat for 3 seconds, hatk tail servo horn and tail servo at a right angle(90 degrees), tail pitch assembly must be correctly fixed aboit in the middie of the travel of tail rotor shaft for standard neutral setting;

After setting Head Lock mode, correct setting position of tail servo and tail pitch assembly is as photo. If the tail pitch assembly is not in the middle position, please adjust the length of rudder control rod to trim.

To check the head lock direction of gyro is to move the tail counterclockwise and the tail servo horn will be trimmed clockwise. If it trims in the reverse direction, please switch the gyro to"REVERSE".

GENERAL FLIGHT－敘飛行䍿试

Stick position at high／Throttle100\％／Pitch $+11^{\circ}$

Stick position at Hovering／Throttle $70 \% \sim 75 \% /$ pitch $+5^{\circ}$

Stick position at low／Throttle $0 \% /$ Pitch $-2 \sim 0^{\circ}$

Stick position at middle／Throtle $80 \sim 85 \%$／Pitch 0°

Stick position at Iow／Throttle $100 \% /$ itch－ 11°

1．Pitch range：Approx $26^{\circ}\left(\pm 13^{\circ}\right)$ degrees．
2．If the pitch is set too high，it will result in shorter fight duration and poor motor performance．
3．Setting the throttle to provide a higher speed is preferable to increasing the pitch too high．

	GENERAL FLIGHT一解飛行模式	
	Throttle油等等	Pitch
5	100% High speed 100\％売速	$+11^{\circ}$
4	85\％	
3	$\begin{gathered} 70 \%-75 \% \text { Hovering } \\ 70 \%-75 \% \text { 标筫 } \end{gathered}$	$+4^{\circ} \sim+5^{\circ}$
2	40\％	
1	0% Low speed	$-2^{\circ}-0^{\circ}$

Fip If si recominetided to kse a lower pitck seling when wsing ingler RPMHead speed．Hisk will alloWhar 6elfer power．

IDLE 1：SPORT FLIGHT

Throttle潧門		Pitch縲距
5	100\％	$+11^{\circ}$
4	75\％	
3	70\％	5°
2	75\％	
1	80\％	-11°

 Throttle Curve（Simple Aerobatic Flight）

1DLE 2：3D FLIGHT

Throttle唃門		Pitch解䄈
5	100\％High 100\％葻	$+1{ }^{2}$
3	$\begin{gathered} 85-90 \% \text { Middle } \\ 85-90 \% \phi \end{gathered}$	0°
1	$\begin{gathered} 100 \% \text { Low } \\ 1003 \text { 纸 } \end{gathered}$	－11 ${ }^{1}$

BATTERY電施 ALIGN LI－POIY 11．1V 850 mAh

Motor Pinion Gear騊達主齿	Main Rotor Blade主椗登規桑	Pitch䌦距		Current（A） approx． 	Throttle Curve 	RPM approx．
15 T	205 Main Blades 205主䈄登	Hover 停筧	$+5^{\circ}$	3.9	0／50／70／85／100\％	3520
		Idie	0°	4.2	85\％\ddagger	4460
			0°	4.9	100／100／100／100／100\％	4700 恧
			$\pm 11^{\circ}$	10.4		4160
	205D Carbon Fiber Blades 	Hover 祭锠	$+5^{\circ}$	3.8	0／50／70／85／100\％	3530
		Idle	0°	4.0	85\％乐	4500
			0°	4.7	100／100／100／100／100\％	4770 合
			$\pm 11^{\circ}$	10.1		4200

NOTE：1．Please use a pitch gauge to adjust the pitch value．Incorrect excess pitch setting will result poor helicopter performance and reduce ESC＇s life and battery＇s life．
A 2．For the safeties of flight and helicopter structure，please do not equip the power of main blade over 4500RPM．

PRODUCT FEATURES 苃號色

1．5－6V step－less adjustable BEC output allowing custom voltage setking to mbtch servo speaification．
2．BEC output utilizing linear power system，suitable for $7.4-11.1$ Y（2S－3S）Li bathery，with conthaous current rating of $2 A$ ，and burst rating of $3 A$ ．
3．Three programmable throttle speed settings to support quick throttle response．
4．Include soft start and Governor Mode．
5．Small and compact PCB design for lightweight and simple instaHation．
6．Large heat sink for optimum thermal performance．
7．Highly compatible to work with 98% of all brushless motors cimrently ob the market．
8．Ultra－smooth motor start designed to run with all kinds or brushtess motors．

10．The throttle has more than 200 step resolution that provides great throttle response and control．

SPECIFICATION 规格

Model型號	Continious Current持縞	Peak Current路閱	BEC Output BEC塗湈	Dimension尺寸	Weight霓是
RCE－BL15X	15A	20A	Output voltage： $5-6 \mathrm{~V}$ step－less adjustment Continuous current 2A；Burst current 3A 	$42 \times 24 \times 9.3 \mathrm{~mm}$	15 g

1．Good temperature situation for working at the maximum current
2．Supporting motor types：2－10 pole in／outrunner brushless motors．
3．Supporting maximum RPM： 2 pole $\rightarrow 190,000 \mathrm{rpm} ; 6$ pole $\cdots 63,000 \mathrm{rpm}$ ．
4．Input voltage： $5.5 \mathrm{~V} \sim 12.6 \mathrm{~V}(2 \sim 3 \mathrm{~S} \mathrm{Li}-\mathrm{Po})$
NOTE：When setting to the Quick throttle response speed，the accelerative peak current will increase．

FUNCTIONS 肴品功能

1．Brake Option－ 3 settings that include Brake disabled／Soft brake／Hard brake．
2．Electronic Timing Option -3 settings that include Low timing／Mid timing／High timing．Generally， 2 pole motors are recommended to use low timing，while 6 or more poles should use Mid timing．High timing gives more power at the expense of efficiency．Always check the current draw after changing the timing in order to prevent overloading of battery．
3．Battery Protection Option－ 2 settings that include Li－ion，Li－poly High／Middle cutoff voltage protection．
The default setting is high cutoff voltage protection．CPU will automatically determine cell number of input Lithium battery（ $25 \sim 3 S$ ）．This option will prevent over－discharge of the battery．The following reference is the guideline for setting the Battery Protection option．

3－1 Li－ion／Li－poly High cutoff voltage protection－When the voltage of single cell drops to 3.2 V ，the first step of battery protection mode will be engaged by the ESC resulting in reduced power．The pilot should reduce the throttle and prepare landing．If the voltage of single cell drops to 3.0 V ，the second step of battery protection mode will be engaged resulting in power cutoff．（＊Note 1）For $11.1 \mathrm{~V} / 3$ cells Lithium battery，the full charged voltage will be approximately 12.6 V ．
According to this input voltage，CPU will determine that this is a 3cell battery，
First step protection： $3.2 \mathrm{~V} \times 3 \mathrm{cell}=9.6 \mathrm{~V}$
Second step protection： $3.0 \mathrm{~V} \times 3 \mathrm{cell}=9.0 \mathrm{~V}$
When the voltage drops to 9.6 V ，the power will be reduced．When the voltage drops to 9.0 V ，the power will be cut off． 3－2 Li－ion／Li－poly Middle cutoff voltage protection－This option is same as instruction 3－1，but when the voltage of single cell drops to 3.0 V ，the first step of battery protection will be engaged．When the voltage of single cell drops to 2.8 V ，the second step of battery protection will be engaged．（＊Note 1）
Note 1：Second step of battery protection only works when Aircraft mode is setting to the option 4－1．
NOTE：THIS OPTION IS ONLY SUITABLE FOR A FULIY CHARGED BATIERY PACK IN GOOD WORKING CONDITION．
4．Aircraft Option： 3 settings that include Normal Airpiane／Helicopter $1 /$ Helicopter 2.
Normal Airplane Mode is used for general airplanes and gliders．When flying Helicopters；you can choose Helicopter 1 Mode，or Helicopter 2 Mode．Helicopter 1 Mode provides Soft Start feature．Helicopter 2 Mode provides Soft Start and Governor Mode．
5．Throttle response speed： 3 settings that include standard／Medium／Quick throttle response speed．
The default setting is＂quick speed＂．Use this option to adjust the setting according to flight character．For example， setting at Medium or Quick speed for 3D and powerful flight to make the power response more quickly，but note the accelerative peak current and power expense will increase．
6．BEC output voltage setting： $\mathbf{5 - 6} \mathrm{V}$ step－less adjustment．
This option allows custom voltage setting．Default setting is 5.5 V ；please adjust the voltage according to the specification of the servo（speed and resistance）．Prior to entering the setup mode，a voltmeter needs to be connected to the power inlet of the receiver（as illustration）to monitor the selected voltage．The voltage is set by varying the throttle stick position from low（ 5 V ）to high（ 6 V ）．

The voltmeter needs to be connected to any un－use inlets＂+ ＂and＂ 4 ＂to measure the selected voltage．
以嗂測所選摆的管酸。

NOTE：Certain servos are designed to work with high voltage，while other servos are designed for lower voltage． To avoid damage to servos，please follow fro servo＇s factory specification to determine the proper voltage setting．

7．Thermal Protection，When the ESC temperafure reaches $80^{\circ} \mathrm{C}$ for any reason，it will engage the battery protection circuit， reducing power to the ESC．We recommend mounting the ESC in a location with adequate air flow and ventilation．
8．Safe Power On Atarm：When the operator turns on the ESC，it will automatically detect the transmitter signal．The ESC will emit a confirmation tone and enter normal operation mode if the throttle is set to the lowest position．If the throttle position is at full throttle，it wll begin to enter Setup Mode．If the throttle is in any other position，the ESC will emit an alarm and not enter into usermode for safety precautions．
9．Aircraft Locatory It the alferaft should land or crash in an unexpected location and become lost，the pilot can enable the Aircraft Locato Option．The Aircraft Locator Option is engaged by turning off the transmitter．When the ESC does not receive a signsf from the transmitter for 30 seconds，it will start to send an alarm to the motor．The sound of the alarm will aid the pilot to locate the aircraft．This option will not work with a PCM receiver that has SAVE function enabled，or with low noise resistant PPM receivers．

SETUP MODE 陪定慕式

1．Setup mode：Make sure to connect the ESC to the throttle channel of the receiver．Please refer to the user manual of your radio system．The second step is to connect the 3 power－out signal pins to the brushless motor．
Before you turn on the transmitter，please adjust the throttle stick to the maximum full throttle position．Proceed to connect the battery to the ESC．You will hear confirmation sounds as soon as you enter the SETUP MODE．Please refer the attached flow chart for details．
2．Throttle stick positions in Setup mode：Setup mode includes six settings：Brake，Electronic Timing，Battery Protection， Aircraft，Throttle Response Speed and BEC output voltage．Every setting has three options．Simply place the throtte stick in the highest，middle；and towest positions for each setting．For example，first brake setting（Hard）：move the stick to the highest position．Then timing setting（mid）：move the throttle stick in the middle position．

設定模式說縣。

	$\begin{aligned} & \text { Low } \\ & \text { 低 } \end{aligned}$	$\underset{\ddagger}{\text { Middle }}$	Hig
Brake 	2Brake disabled（1－1）無軗車（1－1）	Soft brake（1－2）軟隺察簐（1－2）	Hard brake（1－3）急烝草（1－3）
Electronic Timing选角設定	Low－timing（2－1）］栠顀角（2－1）	Mid－timing（2－2）中造角（2－2）	High－timing（2－3）窝檤角（2－3）
Battery Protectio 	gh cutoff volkage protection 	Fidide cutoff voltage protection（3－2） 	
Aircraft飛誛模式設定	rmal Airpane／Gifder（4－1） 	OHelicopter 1 （Soft Start）（4－2） 	Heliconteft（Sort Start Governot Mode）（4－3）
Thyottle response speed 	Standard（5－1）橙準（5－1）	Niedium speed（5－2）中速 5 年－2）	Winck speed（5－3）倝雨（5－3）
BEC output voltage BEC 縶出营凨設定	5.0 V	5.5	6.0 V

First Beep Group Brake Status

$$
\begin{aligned}
& \delta=\text { Brake disabled } \\
& =\text { 無僌事 } \\
& D=\text { Soft brake } \\
& =\text { = 軟性築車 } \\
& D D=\text { Hard brake } \\
& \text { = 急䇣車 }
\end{aligned}
$$

Third Beep Group

Battery profection Cutoff

$=$ High cutoff voltageprotection
$\lambda=$ 高截止電䈔保護
$=$ Middle cutoff voltageprotection
$\cdots=$ 中截止電驚保護

Second Beep Group Electronic Timing
 第一丙固瑶音 進用設定狀態提示

$$
=\text { Low timing (apply to } 2 \text { pole inrunner motors) }
$$

－＝低進角（適合 2 級內囀子馬達）
$=$ Mid timing（apply to 6 pole in／outr unner motors）
$\therefore=$ 中適角（渵合合経内外轉子馬達）
＝High timing（apply to high power output）

High－timing／big power／power expense

Fourth Beep Group Aircraft Status

t＝Normal airplane／Glider

，Helicopter 1 （Soft start）

$\therefore \lambda=\begin{aligned} & \text { Helicopter } 2 \\ & \text {（Soft start }+ \text { Governor Mode）}\end{aligned}$
 ＋Govener Hode定速功能）

Fifth Beep Group

Throttle Response

$$
\begin{aligned}
& \lambda=\text { Standard } \\
& \text { =縹準 } \\
& =\text { Medium speed } \\
& \text { - =中速 } \\
& \Rightarrow D \Rightarrow=\text { Quick speed }
\end{aligned}
$$

INSTRUCTIONS ON AIRCRAFT MODE SETTINGS 飛機模式設疍使用詋明

Normal Airplane／Glider Mode（Option 4－1）：
This option is applied to general airplanes and gliders．
Helicopter 1 Mode（Option 4－2）：
This option provides a soft start feature and is applied to Helicopters for Normal，Idle Up 1，or Idle Up 2 modes．
Please note that the sensitivity of the gyro should be set lower when flying in Idle Up 1 or ldie Up 2 modes if tail hunting （wag）occurs due to higher rotor speed．
Helicopter 2 Mode（Option 4－3）：
This option supports soft start as well as Governor Mode features and is applied to Helicopters for Idle Up 1 and Idle Up 2 modes（not suitable for Normal Flight Mode）．When Governor Mode is in use，the throttle should be set between 75% and 85% ．Again if tail wag occurs，lower the sensitivity of the gyro to eliminate the hunting effect．The Governor Mode may not work properly in cases of insufficient rotor speed（due to improper gear ratio），poor battery discharge capability，and improper setting of gyro sensitivity and the blade pitch，etc．Please make sure all the proper adjustments have been done when using Governor Mode．
一般飛機模式（選碩4－1）：適用於一般飛機及深㴊縵。

SETUPMODE 程式化設定㷬式

Features 疾品特色

－Utilizes Silicon Micro Machines（SMM）sensor with excellent stability to dramatically reduce in－flight tail drifts．
－Utilizes AHTCS（Active Helicopter Tail Control System）to compensate any drift caused by wind direction and force，as well as unintended yaw induced by helicopter itself during flight maneuvers．
－Tailor made specifically for use with high speed digital rudder servos．This gyro festures high sensitivity and minimal reaction time，fully utilizing the potential of modern high speed digital rudder servos．
－Suitable for all sizes of helicopters，from micro indoor to large 90 size glow helicopters．
－Metallic dampening plate built into bottom gyro casing，dramatically increasing anti－vibration and anti－interference abilities．
Features 1520μ s pulse wide and $760 \mu \mathrm{~s}$ narrow pulse wide frame rate．
ODigital／Analog servo switchable．
Q Reverse switch．
Rudder servo travel limit adjustment（ATV）．
Mode switch for large／mini helicopter．
－Delay adjustment．
Gyro locking mode and gain can be adjusted remotely from the transmitter．

定能力。

Program setting table 程式設定對昭裚

数住類比周股機切掃。

Setting type設定頃鳥	1520／760 1 s	DS／AS	NOR／REV	L． M IT	Helicopter mode／DELAY瞋學機模式／DELAY
＂STATUS＂green ＂STATUS＂線燈	－Standard $1520 \mu \mathrm{~s}$ Servo 4䌨集 $1520 \mu \mathrm{~s}$ 橧服機	ADigital servo ADS娄㕸栓服譏	Δ Normal rotation 	Left（Right）Travel limit奈（右）行程量	Medium／large heli，suitable for T－REX500／600／700也型／大型㛾舜機 適用T－REX500／600／700
＂STATUS＂fed ＂STATUS＂紋撜	Narrow band 760 ＋1 5 Servo聟頻 760 u s俭限機	Analog Servo AS類比伺級烐	Reverse rotation REV反隐	Right（Left）Travel fimit石（左）行程黄	Mini／Micro hell，suifable for T－REX250／450
Setting instruction設定方式說䐓	See no． 2 in setting instructions 參昭镹定方式第2兴	See no． 3 in setting instructions 	See no． 5 in setting． instructions 參緊設定方式筙与項	See no． 6 in setting instructions 参照䋁定宁式第6形	See no． 8 in setting instructions參然設定管式第8頶

NOTE ：1．＂A＂Defaut setting c 2．Wrong heli mode will affect the performance of gyro．Do not fiy before the complete setting．

TREX250 Standard sefting I Re 250 摽潐設：

STEP1步繁1	STEP 2步螨2
suanuru bata 	Crem oigita Sevin
\square gtars－3D GyRo 人 A LIGN SHaCobidnau（10y 6ambsentio 4	

Dlagram s部各橡

Status LED
斯憼指示枚登
Setup indicator

Black wire to＂．．．．＂port

Onerating Voltage：DC 4．5～7V	－適用霓然：DC 4．5－7V
＊Curent Consumption：＜80mA＠4．8V	
Angular Detection Speed：± 500 degrees／sec	（3）䫡澌用速授 ± 500 度／sec
\％Operating Temperature： $0^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}$	㐱操作涊㩊： $0^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}$
Operating Humidity： $0 \% \sim 95 \%$	
Size： $26 \times 25 \times 11 \mathrm{~mm}$	
＊Weight： 14 g	6符合ROHS䀶用貌
＊RoHS compliant	

DS420 Digital Servo N S400 数应同股機

－Speed： 0.08 sec 160 degrees $(4.8 \mathrm{~V})$ $0.06 \mathrm{sec} / 60$ degrees（6．0V）
Torque： $0.75 \mathrm{~kg}, \mathrm{~cm}(4.8 \mathrm{~V})$ $1.0 \mathrm{~kg} . \mathrm{cm}(6.0 \mathrm{~V})$
．Dimension： $22.8 \times 12 \times 25.4 \mathrm{~mm}$
Weight： 12.7 g （Servo horn not included）
$1520 \mu \mathrm{~s}$（standard band）
－動作速度： $0.08 \mathrm{sec} / 60^{\circ}$（4．8V）
$0.06 \mathrm{sec} / 60^{\circ}$（6．0V）
输出招力： $0.75 \mathrm{~kg} . \mathrm{cm}(4.8 \mathrm{~V})$
1．0kg．cm（ 6.0 V ）

GP750 contains many function settings．In order to use it more smoothly and bring up the function of the gyro，please read and understand the following illustrations：
1．The first function setting of GP750 is 1520μ s（standard）or $760 \mu \mathrm{~s}$（narrow band）servo selection．
Please set 1520μ s（standard）for all Align DS series digital servos，which has green STATUS LED．
※CAUTION（Only set 760μ s（narrow band）when using FUTABA s9256，S9251，and BLS251 Servos．
（o）If you set $760 \mu s$（narrow band）instead of $1520 \mu \mathrm{~s}$（standard）when using Align DS series digital servos，it will cause the rudder servo deflect to the side and unable to center．The limit will be really little and unable to function normally．The servo will be jammed because of the tail control assembly has an exceed travel limit．The servo will be bumed out if holding this condition for 30 seconds．
2．The DELAY setting of GP750 is not only control the delay but also the helicopter mode．Red STATUS LED is for TREX 250／450 and green STATUS LED for TREX 500／600／700．Please always remember to set the
STATUS LED to red when paired with a T－REX 250 or any adjustment may cause tail slides and bad locking result
3．Please install the round servo horn set into DS 420 servo（the most inner hole， 4.5 mm to the mid－point of rudder piece．
4．Please set the pitch of AIL，ELE and PIT $40 \%-45 \%$ from the SWASH setting in the transmitter．The pitch of the main blade should be set between 10＂－11＂．Suggested not set over $11^{\prime \prime}$ or the instant movement may happen when push the throttle rapidly

指示燈為線瀠。

Gain and Rudder channel mapping diagram逨援對照表

IR PPM／SPCM	＂RUDD＂	＂AUX 2＂or＂AUX 3＂
Hitec Futaba PPM／PCM	＂CH4＂（RUD）	＂CH5＂
JR ZPCM	＂RUDD＂	＂AUX 2＂

Gyro Installation 陀鑔蛾的安㞐

1．Utilizing the inctuded double sided foam tape as shown in diagram below，mount the gyro on a solid platform or designated gyro mounting location on the helicopter． Ensure gyro mounting area have proper ventilation and away from heat sources．
2．To avoid drift induced by erroneous yaw detection，the bottom surface of gyro must be perpendicular（ 90 degrees）relative to the main shaft．
3．For installation on electric powered helicopters，the gyro should be installed as far away from the electronic speed controller（ESC）as possible to avoid interference
 （minimum 5 cm ）．

Usage Settinginstructions使用及設定方式

1．Transmitter Settings：After powering up transmitter，make sure rudder subtrim is zeroed，Then power on the receiver and gyro．The gyro will go through initializing process indicated by flashing $\mathbf{H E D}$ ．So vot fouch tie hetio transmitter
 mode，while red t．ED indicates gyro is in normal mode．
Note：The GP750 is set to 1520μ S at the factory．f $760 \mu \mathrm{sservo}$ is used in $1520 / \mathrm{s}$ mode，rudder servo will deflect to the side and unable to center．For more culically，the linkage tod may jam and cause the servo burned out，Please follow the instruction（Usage setting 2）to ehange the setting if $760 \mu \mathrm{~s}$ servo is used． Please ensure the following mixing functions（ifavailable）are disabled or zeroed on the transmitter．

```
    ATS
    * Pitot authority mixing
    Throttle to rudder mixing
```

－Rudactio gyro mixing
－Plechio rudder mixing
\＆Revolution mixing
$2.1520 \mu \mathrm{~s}$（standard）or 760 ／S（harrow band）servo selection：GP750 offers compatibitity for two types of frame rates under digital mode．Please set the GP750 to 760 mode if 760μ s frame rate rudder servos（such as Futaba S9256， S9251，BLS251）are used．Mostolfer servos have 1520 us frame rate，and GP750 should be set to 1520 mode if those servos are used．
To enter the setup node：Press and hold the SET button for 2 seconds，and the STATUS LED will begin flashing．When the $1520 / 760$ mdicator 11 up，you are in the servo frame rate setup menu．Use the rudder stick on your transmitter to select the frame rate，move the sthet to left（or right）and STATUS led changes to green，the frame rate has been set to $1520 \mu \mathrm{~s}$ ．If you want to set he lrame rate to $760 \mu \mathrm{~s}$ ，move the stick to opposite end 3 times to make STATUS led changes to red．（Note：The faceolate of GP750 has the setting values listed in the corresponding green／red letters．） Press the SET To confirm the current setting and enter the next setting．The GP750 will exit setting mode if left idte for 10 seconds．

ATS
－Pilot authority mixing
－Throttle to rudder mixing
－Rudder to gyro mixing
＊Pitch to rudder mixing
－Revolution mixing

Utilizing DS 420 rudder servo as an example，the recommended focation of linkage connection is the first hole from the center on the servo horn．The ideal distance from linkage connection to servo center is 4.5 mm ．

3．Digital（DS）／Analog（AS）Servo Selection：Servo speed is of paramount importance in maximizing the gyro＇s
performance．Fast servos are able to respond to gyro commands quickly，resulting in the speed and precision of overall system．Due to the high sensitivity of GP750 gyro，high speed digital servos such as Align DS420，DS520，Futaba S9257，$\$ 9256$ ， $\mathrm{S} 9254, \mathrm{~S} 9253$ ，or other similar spec servos are recommended．Select＂DS＂when digital servos are used，and＂AS＂when analog servos are used．
To enter the setup mode：Press and hold the SET button for 2 seconds，and the STATUS LED will begin flashing．Press the SET button repeatedly until DS／AS led is lit．Use the rudder stick on your transmitter to select the Servo type：move the stick to left（or right）and STATUS led changes to green，the servo type is set to DS．Move the stick to opposite direction and STATUS led changes to red，the servo type is set to AS．
Warning：The use of analog servo under＂DS＂mode will result in servo failure．The GP750 gyros are set to＂DS＂mode at the factory．Please set the proper servo type based on servo used．
4．Check the direction of rudder：move the rudder stick on transmitter left／right and check the helicopter＇s instruction manual for correct rudder direction．Servo reverse function on the transmitter can be used for reversed rudder．
Set the transmitter gyro gain channel to normal mode，or press and hold the SET button for 2 seconds to center the rudder servo． Adjust the servo horn so it is perpendicular（ 90 degrees）relative to the pushrod．Then adjust the rudder linkage length so the tail pitch control system is within range．
5．Setting of gyro direction nor／rev：Check the gyro direction by moving the heli on the yaw axis while holding by hand．Observe the direction gyro is moving the rudder servo．If direction is incorrect，switch the direction switch on the gyro to compensate． To enter the setup mode：Press and hold the SET button for 2 seconds，and the STATUS LED will begin flashing．
Press the SET button repeatediy until NOR／REV ted is lit．Use the rudder stick on your transmitter to select the
Servo type：move the stick to left（or right）and STATUS led changes to green，the servo direction is set to NOR．
Move the stick to opposite direction and STATUS led changes to red，the servo direction is set to REV．
Warning：Flying with reversed gyro will cause the heli to spin out of control．Please double check the direction before attempting to fly the heli．
6．Rudder Servo Travel Limit Adjustment：Press and hold the SET button for 2 seconds until the STATUS LED flashes．At this point the rudder servo will be centered．Press the SET button repeatedly until LIMIT led is lit．While observing the heli tail， gradually move the rudder stick on your transmitter left until the tail pitch slider reaches end．Then move the rudder stick on your transmitter right until the tail pitch slider reaches the other end．This will set the travel limit of the servo．Insufficient rudder servo travel limit will result in decreased rudder performance，while excessive rudder servo travel will overload the rudder servo and cause failures．
7．Gyro Gain Adjustments：For radio with GYRO function，gain can be adjusted using this function．The AHTCS（heading lock） gain is set by adjusting the GYRO setting between 50% to 100% ，while the normal mode gain is set by adjasting the GYRO setting between 0 to 49% ．Actual gain settings will differ amongst different helis and／or servo．The goal is to achieve as high of gain as possible without the tail oscillating（wagging），therefore such adjustment can only be done under actuallight conditions． Suggested initial settings are 65% during hover，and 60% during idle－up conditions．
Gyro gain can be increased or decreased after observing the presence of tail osciffition daring fights．
Note：For radio systems using 0 －100\％as gain adjustment under heading lock fiode（such es fitaba），the fecommended gain setting is approximately 20% ．For radio system using $50-100 \%$ as gain adjustment under heading lock mode（such as JR and Hitec），the recommended gain setting is approximately 65% ．
8．helicopter mode and delay setting．These settings incorporates wo functions：
（1）GP750supports mini／micro indoor heficopters．Set the setting based on the appropriate helleopter class．
For example：Set the helicopter mode to mini／micro setting（Sfatus LED turns rea）for F Rex 250 and 450 ；set the helicopter mode to medium／large setting（Status LED turns green）for TRRex $500 / 600 / 700$ ．
（2）Slow rudder servos may cause tall oscillation as it receives the faster signat from sylo．If tail oscillation occurs after hard stop from stationary pirouette，increase the gain seting until such oscillation stoos
Generally the delay value should be as low as possible and used only to compensate for slower servos．
Setting Method：Press and hold the SET．button for 2 seconds to enter the setup menu，and select DELAY setting．Push the rudder stick left or right and observe the STATUS LED．RED STATUS represents mini／micro helis such as T－REX250／450，GREEN STATUS represents medium／large helis such S S 1 －REX500／600／700．The amount of delay is set by holding the rudder stick at the position corresponding the delay percentáge， 0% at middle stick position（DELAY STATUS LED is flashing）and 100% at the end position， and pressing the SET button to confirm the delay setting

6．L 林 T T

PLEASE PRACTICE SIMULATION FLIGHT BEFORE REAL FLYING 飛行能請事先㠇練模疑飛行
Do a simulation flight until you familiarize your fingers with the movements of the rudders，and keep practicing until thefingers move naturally．
1．Place the helicopter in a clear open field（Make sure the power OFF）and the tail of helicopter point to yourself．

2．Practice to operate the throttle stick（as below illustration）and repeat practicing ＂Throttle high／low＂，＂Aileron left／right＂，＂Rudder left／right＂，and＂Elevator up／down＂．
3．The simulation flight practice is very important，please keep practicing until the fingers move naturally when you hear operation orders being call out．
4．Another safe and effective practice method is to use the transmitter flying on the computer through simulator software sold on the market．

If there are other radio control aircraft at the field，make sure to check their frequencies and tell them what frequency you are using．Frequency interference can cause your model，or other models to crash and increase the risk of danger．


```
A cation
```

First check to make sure no one else is operating on the same frequency．Then place the throttle stick at lowest position and turn on the transmitter．

\star Check the movement．
＊動作維認

ON！Step1
First turn on the transmitter．

（o）Are the rudders moving according to the controls？
（）Follow the transmitter＇s instruction manual to do a range test．
（9）方向觗是否蛙兴控制方向移動？

ONI Step2
Connect to the helicopter power接上道异機電源

OFFI Step3

Reverse the above orders to turn off．關間電源時請依上述操作動作反報行。

CALTHON

Tracking adjustment is very dangerous，so please keep away from the helicopter at a distance of at least 5 m ．

1．Before adjusting，apply a red piece of tape on one blade，or paint a red stripe with a marker or paint to identify on blade．
2．Raise the throttle stick slowly and stop just before the helicopter lifts－off ground．Look at the spinning blades from the side of the helicopter．
3．Look at the path of the rotor carefully．If the two blades rotate in the same path，it does not need to adjustment．If one blade is higher or lower than the other blade，adjust the tracking immediately．
4．Linkage rod（C）：Slight pitch trim．

A．When rotating，the blade with higher path means the pitch too big．Please shorten pitch linkage rod（C）for regular trim．
B．When rotating，the blade with lower path means the pitch too small．Please lengthen pitch linkage rod（C）for regular trim．

$\wedge^{\text {cabrion }} \mathrm{E}$

Incorrect tracking may cause vibrations．Please repeat adjusting the tracking to make sure the rotor is correctly aligned．After tracking adjustment，please check the pitch angle is approx．$+5 \sim 6^{\circ}$ when hovering．

FLIGHT ADIUSTMENT AND NOTICE FOR BEGINNERS 初學飛行調整與注意

Action

©Make sure that no one or obstructions in the vicinity．
© You must first practice hovering for flying safety．This is a basic flightaction．
（Hovering means keeping the helicopter in mid air in a fixed position）

OPlease stand approximately 5 m diagonally befind the helicopter．
○練習時，請站在直昇機後方5公尺。

Beginner may install a training landing gear to
avoid any crash caused fy offset effect while landing．

©When the helicopter begins to lift－off the ground， slowly reduce the throttle to bring the helicopter back down．Keep practicing this action until you control the throttle smoothly．

STEP 2 AILERON AND ELEVATOR CONTROL PRACTICE 剻翼和降空制練㬔

STEP 3 RUDDER CONTROL PRACTICING 方向能操作練習

1．Slowly raise the throttle stick．
2．Move the nose of the helicopter to right or left，and then slowly move the rudder stick in the opposite direction to fly back to its original position．

STEP 4

After you are familiar with all actions from Step to 3，draw a circle on the ground and practice within the circle to increase your accuracy．

© You can draw a smaller circle when you get more familiar with the actions．

STEP 5 DIRECTION CHANGE AND HOVERING PRACTICE 改變直界幾方问和練㬔楊㭘

After you are familiar with Step1 to 4，stand at side of the helicopter and continue practicing Step 1 to 4．
Then repeat the Step1 to 4 by standing right in front of the helicopter．

ADIUSTMENT OF EACH TRIM 飛行㩾作㪣撛

Slowly raise the throttle stick and just as the helicopter lift－off the ground，
you can use the trim to correct the action if the helicopter leans in a different direction．

1．Adjustment of rudder trim 調慗方和銫微調
Just before the helicopter Hift－off，the nose lean left／right．．．
When leans right，adjust the trim to left side．
When leans left，adjust the trim to right side．

2．Adjustment of elevator trim 諰整升降能改堽 Just before the helicopter lift－off，the nose lean forward／backward．．．
When leans forward，adjust the trim down．
When leans backward，adjust the trim up．

 Just before the helicopter lift－off，Me body lean left／right．
When leans right，adjust the trim to left side．
When leans left，adjust the trim to right side．

	Siluation弲方	Cause諒因	Way to deal對策
Blade Tracking菲渋平衡	Out oftracking 6	Adjustment of pitch rod has not been done． PITCH連棎長度調整不平均	Adjust the length of linkage rod（C） \rightarrow Slight trim
During Hovering	Low rotation of the rotor 	\star Pitch of main blade is high． 大主旋巽鯂PITCH 编高 \star Throttle curve is too low during hovering． 	＊Lower the pitch about $5^{\circ} \sim 6^{\circ}$ during hovering （The rotation should be about 3，300～ $3,500 \mathrm{rpm}$ during hovering）． \star Heighten the throttle curve during hovering．
楊旋	High rotation of the rotor 	\star Pitch of main blade is low． ＊主旋䧲的PITCH扁低 \star Throttle curve is too high during hovering． ＊停旅转油聞曲緮過高	\star Adjust the pitch rod（C）（The rotation should be about 3，300～3，500rpm during hovering）． \star Lower the throttle curve during hovering．
Sensitivity of the gyro	The tail leans to one side during hovering，or when trim the rudder and return to the neutral，the tail lags and cannot stay in a control position． 	＊Failure setting of tail neutral point． ＊尾中立塂䛵定不嘗 \star The sensitivity of the gyro is low． 	＊Reset tail neutral point． ＊䇛钤尾中立點 \star Increase the sensitivity． 夫增加蚫度
	The tail wags left and right during flight at hovering or full speed． 	The sensitivity of the gyro is high． 	Decrease the sensitivity．降彽感度

※If the problem is still there even after tried above，stop flying and contact with your seller．

No．	Cote Nos			Spectication	auantity	Remarks
1	H682XZZ	Bearing	暒承	$\Phi 2.5 \times \Phi 6 \times 2.6 \mathrm{~mm}$	4	
2	25H003A	Metal main rotor holder	金嵓主㬞裂夾座		2	
3	25Z005－1	Linkage ball B（0\＃x1．8）	球䫓 $8(0 \# 1 \times 1.8)$	\＄ $3.5 \times 7.32 \mathrm{~mm}$	2	
4	T52008－2	Socket screw		M2x8mm	2	
5	25H005A	Metal main rotor housing			1	
6	25H022	Damper rubber 70°	横朝淕圈 70°	$\phi 2.5 \times \phi 5 \times 2.6 \mathrm{~mm}$	2	
7	25H023	Spacer	楛䩘熱片	Ф $2.5 \mathrm{x} \oplus 4.5 \times 0.2 \mathrm{~mm}$	2	
8	25H017	Pin	定位揽捎	¢ $1.2 \times 14 \mathrm{~mm}$	2	
9	25H020	Feathering shaft	薟㷁	¢ $2.5 \times 30.8 \mathrm{~mm}$	1	
10	T50006－1	Socket button head screw		0\＃x6mm	1	
11	W10020－5	Washer		$\phi 2 \times \Phi 5.7 \times 0.5 \mathrm{~mm}$	2	
12	T52005	Socket screw	图頭内六角鎳綵	$\mathrm{M} 2 \times 5 \mathrm{~mm}$	2	
13	254018	Metal head stopper		$\pm 14 \times 3.5 \mathrm{~mm}$	1	
14	T50004－2	Socket button head screw		$0 \# \times 4 \mathrm{~mm}$	1	
15	25HA03	205D CF Main Blade		205 mm	1set	
15－1	25H001A	205 Main Blade		205 mrab	1 set	
16	25H006A	Metal SF Mixing arm		$\text { TOst } 5 \mathrm{~min}$	2	
17	H681X	Bearing		$\phi .5 \times \emptyset 4 \times 4 \mathrm{~mm}$	6	
18	H681ZZ	Bearing	朝㴍	$45 x{ }^{4} \times 2 m \mathrm{~m}$	2	
19	W10015－1	Washer	華司	$1.615 x .63 \times 0.5 \mathrm{~mm}$	2	
20	T50006－1	Socket button head screw		$07 \times 6 \mathrm{~mm}$	2	
21	25Z004－1	Linkage bail A（0\＃x2）		$\Phi 3.5 \times 5.3 \mathrm{~mm}$	4	
22	25H004	Metal flybar seesaw holder			1	
23	T50004 3	Socket button head collar scre		0\＃×4mm	2	
24	25H007	Metal IVbar control arm		$23 \times 5.2 \mathrm{~mm}$	2	
25	25 H 008	Flybarcontrof rod		$\Phi 3 \times 27.1 \mathrm{~mm}$	2	
26	T50003 ${ }^{1}$	Socket button head screw	半葍䫟内六角然絲	$0 \# \pm 3 \mathrm{~mm}$	4	
27	T72002	M2 Set screw	M2止湿縲縕	$\mathrm{M} 2 \times 2 \mathrm{~mm}$	2	
28	25H019	Flybar rod	F衡䍿泽	Q $1.5 \times 152 \mathrm{~mm}$	1	
29	25H002A	Flybar paddle	平衡斎		2	
30	25Z003	Ball link B			2	

Specifications，contents of parts and availability are subject to change，
Align RC is not responsible for inadvertent errors in this publications．
買動負責，也無法主動通知消費者，任何更新或異勳，請以亞拖網頁為主。

No．	code No．	Name	Specification	auantit	Remarks
31	25 H 024	Main shaft 主辒	$\Phi 3 \times \oplus 3.5 \times 78.8 \mathrm{~mm}$	1	
32	25H025		$\oplus 3.5 \times \Phi 6.5 \times 2.8 \mathrm{~mm}$	1	
33	772002		$\mathrm{M} 2 \times 2 \mathrm{~mm}$	1	
34	25H010A			2	
35	25H030		¢ $1.5 \times \phi 2.3 \times \oplus 3.3 \times 1.5 \mathrm{~mm}$	4	
36	W10015－1	Washer 華回	¢ $1.5 \times \Phi 3 \times 0.5 \mathrm{~mm}$	2	
37	H681X	Bearing 輒函	¢ $1.5 \mathrm{x} \oplus 4 \times 1.2 \mathrm{~mm}$	2	
37－1	H681zZ	Bearing 䡛䎼	$\oplus 1.5 \times \oplus 4 \times 2 \mathrm{~mm}$	2	
38	25Z004－1	Linkage ball A（0\＃x2）球頭A（0\＃x2）	¢ $3.5 \times 5.3 \mathrm{~mm}$	2	
39	T50006－1		$0 \# \times 6 \mathrm{~mm}$	2	
40	25H011A	Radius arm Radius連緆		2	
41	S91506－1		T1． $5 \times 6 \mathrm{~mm}$	2	
42	25H009	Washout base 阿位器	\＄ $3.5 \times 8 \times 7.4 \mathrm{~mm}$	1	
43		CCPM Metal Swashplate 金犀CCPM＋字絲組		1	
44	257004－1		\＄ $3.5 \times 5.3 \mathrm{~mm}$	2	
44－1	252012		Ф3．566mn	4	
45	252006－1	Long linkage ball（0\＃x2）導板悵球頙 $(0 \# \times 2)$	43．5x135．5m	4	
46	25B031	New main drive gear（120T）新型主苞的 112	$120 T$	1	
47	258015－1	Spacer 學和熱范	$t 3 \times=5.80 .51 \mathrm{~m}$	1	
48	H683	Bearing	$13 \times 1.7 \times 2 \mathrm{~mm}$	1	
49	HHF0306	One－way bearing shatt		1	
50	W10015－2	Washer 華司	$\Phi 1.5 \times \Phi 5 \times 0.3 \mathrm{~mm}$	1	
51	T50004－2	Socket button head screw	$0 \# \times 4 \mathrm{~mm}$	1	
51－1	25B032	Main dear case 主落中象痤		1	
51－2	S71504	Countersuik philios self tapping screw 侧頭＋字自政紗緬	$71.5 \times 4 \mathrm{~mm}$	4	
139	25H029－1	Main blade hoider 主旋棫固定架泡楾	$75 \times 44 \times 5 \mathrm{~mm}$	1	
140	K10365	Hook and Loop Tape 緮衡沾	$54 \times 28 \mathrm{~mm}$	1	
141	K10380		$8 \times 140 \mathrm{~mm}$	2	

No．	Code No．	Name	Specifiction	quantity	Remarks
52	25B001A	Carbon fiber upper frame 醂絞上剆板	$110.49 \times 42.6 \times 1.2 \mathrm{~mm}$	2	
53	25B002－1		$84.53 \times 38.24 \times 1.2 \mathrm{~mm}$	2	
54	25B004－1	Battery mounting plate 雱沱国定板		1	
55	25B003	Battery mount 䉓池㛗		1	
56	25B005A			1	
57	25B010A		¢ 3 x ¢ 14 mm	2	
58	T72006		$\mathrm{M} 2 \times 6 \mathrm{~mm}$	2	
59	25B006	Main shaft block 表朝園定㭫		2	
60	HMR74Z2D35	Bearing 朝㴍	$\oplus 3.5 \times \oplus 7 \times 2.5 \mathrm{~mm}$	2	
61	25B020			1	
62	25B012			1	
63	258013－1			1	
64	25B011A			1	
65	S71504		T $1.5 \times 4 \mathrm{~mm}$	3	
66	S91503－1		T $1.5 \times 3 \mathrm{~mm}$	28	
67	S91504－1		T1．5×4971	2	
68	T50003－1		$04 \times 3 \mathrm{~nm}$	2	
69	T50004－2		$0 \mathrm{H} \times 4 \mathrm{~mm}$	6	
70	T50010－1		QHx IOMm	2	
71	25B007	Aluminum link	－ 1.15 x \％ $3.2 \times 6 \mathrm{~mm}$	2	
72	T52505－1		$12.5 \times 5 \mathrm{~mm}$	2	
73	K×880004		3400 KV	1	
74	25B018	Tail boom mount（）		1	
75	25B019			1	
76	25B008			1	
77	25B009			1	
78				1	
79.	$25 B 017$	Plastic hexagonal bott 機守穴属絻柱		7	
80	25T037－1	Drive belt 洨营	5597	1	
81	45B016			6	
82	25Z004－1		\＄ $3.5 \times 5.3 \mathrm{~mm}$	1	
83	25Z005－1	Linkage ball B（0\＃x1．8）球䈅（ 0 \＃$\times 1.8)$	$\Phi 3.5 \times 7.32 \mathrm{~mm}$	2	
84	S92008		T2x8mm	6	
85	25F001B	Landing skid 敡架	$80 \times 27.5 \mathrm{~mm}$	2	
86	$25 F 002$	Skid pipe 镬架跣管	$\Phi 2.9 \times \Phi 3.5 \times 111 \mathrm{~mm}$	2	
87	25F003		$\phi 1.5 \times \Phi 2.5 \times 3,28 \mathrm{~mm}$	4	
88	25F004		¢ $3.4 \times \Phi 5.5 \times 6 \mathrm{~mm}$	4	
89	S91506－1		$71.5 \times 6 \mathrm{~mm}$	4	
90	25F005－1	Antenna pipe 天綏管	$\Phi 1.5 \times \Phi 3 \times 240 \mathrm{~mm}$	1	

No．	Core No．	Name	Sticherication	Ouantiy	Rematks
94	257007	Rudder servo mount 尾閣股器固定座		2	
95	S91506－1		$11.5 \times 6 \mathrm{~mm}$	2	
96	257001	Tail boom 屠箮	$\oplus 7.9 \times \Phi 8.5 \times 241.7 \mathrm{~mm}$	1	
97	257027			1	
98	257028		¢ $1.2 \times 210 \mathrm{~mm}$	1	
99	252001	Ball link 連絔䕱		2	
100	25T004	Metal plate（L）屠菻箱左飦檢	$15 \times 6 \times 2.9 \mathrm{~mm}$	1	
101	25T005A		$15 \times 6 \times 2.9 \mathrm{~mm}$	1	
102	HMR52ZZ	Bearing 轌我	$\Phi 2 \times \Phi 5 \times 2.5 \mathrm{~mm}$	2	
103				1	
104	257003		¢ $3.5 \times 7.6 \mathrm{~mm}$	1	
105	25T002A		$\Phi 8.5 \times 10.7 \times 7.6 \mathrm{~mm}$	1	
106	T50003－1		$0 \# \times 3 \mathrm{~mm}$	6	
107	T50004－2		$0 \mathrm{n} \times 4 \mathrm{~mm}$	4	
108	257020－1			1	
109	25T026A		$\Phi 1.5 \times \oplus 2.5 \times 5 \mathrm{~mm}$	絃1	
110	25Z004－1	Linkage ball A（0\＃x2）球䫅A（0\＃\＃2）	© $3.5 \times 5.3 \mathrm{~m}$ ค		
111	T50008－1	Socket button head screw 半蜀䪽队妫螺絲	$04 \times \mathrm{mrn}$	4 4 䜌緆	
112	257021			－1	
113	W10030－2	Washer		1	
114	HMR63ZZ	Bearing	936 6 6，\％${ }^{\text {mrr }}$	2	
115	257009	Slide shaft	\％ $2 \times 6 \times 8.4 \mathrm{~mm}$	1	
116	257010	T type arm	5	1	
117	25T011	Control link 俍控制連楻頭		2	
118	25T014A		$\Phi 1.5 \times \oplus 2.3 \times 2.4 \mathrm{~mm}$	2	
119	25T015A	Collar B 	Ф1．5x $¢ 2.3 \times 1.4 \mathrm{~mm}$	2	
120	T50005	Sacket butonhead Screw	$0 \# \times 5 \mathrm{~mm}$	5	
121	257035			1	
122	25 T036			1	
123	25T018 ${ }^{\text {bit }}$			1	
124	25T016 ${ }^{\text {\％}}$			1	
125	25T023	Vertical stabilizer mount 熏直媲葍定座		1	
126	25T030－1	Tail boom bracer 尾管支缷架緗		2	
127	S91506－1		T1．5×6mm	2	
128	25T044A			2	
129	25T012A	Tail rotor hub 尾旋駩型窪	$\Phi 2.9 \times \Phi 5.4 \times 11.2 \mathrm{~mm}$	1	
130	H681ZZ	Bearing 軸丞	¢ $1.5 \times 9 \times 2 \mathrm{~mm}$	2	
131	257017	Washer 笔夾座華司	¢ $1.5 \times \oplus 3.8 \times 0.7 \mathrm{~mm}$	2	
132	257022A		40 mm	2	
133	25T041A	37 Tail blade 37尾敛登	37 mm	2	
134	T50006－1		$0 \% \times 6 \mathrm{~mm}$	2	
135	T72002		$\mathrm{M} 2 \times 2 \mathrm{~mm}$	5	
136	W10015－1	Washer 華司	¢ $1.5 \times \oplus 3 \times 0.5 \mathrm{~mm}$	1	

Length／璣䍓長： 430 mm
Height／機孚高： 163 mm

MotorPimion Gear／第迹主苳： 15 量

Weight Winout Power System）／空機黨：1485

Features：

